
Staff Scheduling for Inbound Call Centers and Customer Contact Centers

Alex Fukunaga, Ed Hamilton, Jason Fama, David Andre, Ofer Matan, Illah Nourbakhsh
Blue Pumpkin Software

884 Hermosa Court, Suite 100
Sunnyvale, CA 94086

{afukunaga,ehamilton,jfama,dandre,ofer, illah}@blue-pumpkin.com

Abstract
The staff scheduling problem is a critical problem in the call
center (or more generally, customer contact center) industry.
This paper describes Director, a staff scheduling system for
contact centers. Director is a constraint-based system that
uses AI search techniques to generate schedules that satisfy
and optimize a wide range of constraints and service quality
metrics. Director has been successfully deployed at over 800
contact centers, with significant measurable benefits, some
of which are documented in case studies included in this
paper.

1. Introduction
Staff scheduling is the following classic, operations
research problem: Given a set of employees, assign them to
a schedule such that they are working when they are most
needed, while ensuring that certain constraints are
maintained (e.g., employees must work no more than 40
hours a week, and must have at least 12 hours between
work shifts). Even the simplest variations of this problem
are known to be NP-complete (Garey and Johnson, 1978).

While staff scheduling has long been an important
operations research problem, scheduling has recently
become an important component of an emerging class of
business software applications known as workforce
management software. The need for effective workforce
management systems has been driven primarily by the
recent, rapid growth of the call center / customer contact
center industry, in which efficient deployment of human
resources is of crucial, strategic importance. Traditionally,
in this industry, staff scheduling has been performed using
ad hoc methods and operations research techniques
(Cleveland and Mayben, 1997). However, we found that
this domain is particularly amenable to the application of
constraint-based and heuristic scheduling techniques from
artificial intelligence.

This paper describes Blue Pumpkin Director, a recently
developed staff scheduling system, which is currently being
used by hundreds of contact centers. First, we describe the
staff scheduling problem for call centers and contact
centers. Then, we describe the design and implementation

Copyright © 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

of Director. Finally, examples of successful deployments of
the application will be given.

2. Staff Scheduling in Contact Centers
When a consumer calls a software vendor to ask for
technical support, or if he calls a credit card company with
a billing inquiry, the call is often routed to an inbound call
center (or more generally, contact center), a large,
centralized pool of trained agents (contact center
employees) who are qualified to address the customer’s
inquiry.1

If all agents who can handle the call are busy, then the
customer’s call waits in a queue until an agent becomes
available. Naturally, long wait times result in frustrated,
dissatisfied customers, and it is therefore important for call
centers to be staffed so that the wait times experienced by
customers are acceptable. At the same time, businesses
wish to avoid overstaffing (having idle agents when few
customer calls arrive) in order to minimize the cost of
operating the call center and maximize overall business
profitability.

A standard goal for call center operations is to achieve a
certain service level, i.e., answer X% of calls within Y
seconds, while minimizing overstaffing.

It is well known that acquiring a new customer is several
times more expensive (in terms of marketing/sales
expenses) than deriving revenues from an existing
customer. Therefore, maintaining customer satisfaction by
achieving good service levels has a significant impact on
corporate revenues. In addition, personnel costs account for
60-70% of the operational cost of a contact center.
Efficient contact center staff scheduling is therefore
important to a business both from the perspective of
revenue (“the top line”) as well as for operating margins
and profitability (“the bottom line”).

Internal corporate call centers are the centralized customer
service organizations that serve as the foci of customer
contact for businesses. There is also a large industry of
outsourced call centers. Businesses regularly outsource

1 Note that by “centralized” we refer to organizational centralization. Call
centers are frequently geographically distributed, with calls being routed
to the most appropriate resource around the world. One of the challenges
in modern call center scheduling is creating a coordinated schedule that
utilizes resources from distributed call centers.

822 IAAI-02

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

some of their customer service functions to outsourcers,
who are committed by the terms of a service level
agreement in the contract to achieve specified service goals
(e.g., Outsourcer X agrees to handle Manufacturer Y’s
sales inquiries, and promises that 80% of the calls will be
answered within 20 seconds). Therefore, efficient staff
scheduling is particularly critical for these outsourcers, so
that they can deliver the contractually agreed upon service
levels while operating profitably.

Although most interactive contact between customers and
businesses still takes place through the telephone, customer
contact through other media such as e-mail, on-line chat /
instant messaging is rapidly increasing. A contact center is
a generalization of a call center, where agents handle these
other media, in addition to traditional media such as phone
calls and faxes. Contact centers offer some new challenges
for staff scheduling systems, as described below.

Since the call center industry is not well-known in the
AI/computer science communities, it is worth noting some
relevant market statistics. In the beginning of 2001, there
were over 82,000 contact centers (employing over 1.5
million agents) in the U.S. alone, expected to almost double
by 2004 (Frost and Sullivan, 2001; Saddletree, 2001,
Datamonitor, 1998). Approximately 7% of U.S. call centers
were using a workforce management system. Note that the
market penetration of workforce management software is
still very low, in part because modern workforce
management systems with the full capabilities and ease of
use required by the call center market are relatively new.
However, because of the clear economic benefits, the
market for workforce management software is growing
rapidly (the annual revenues for the call center workforce
management software market were $175 million in 2001,
expected to grow to over $500 million by 2006). (Frost and
Sullivan, 2001; Saddletree, 2001).

The contact center scheduling problem poses a very
challenging problem. Meeting the demand profile implied
by the forecasts of incoming calls/contacts is by itself a
difficult combinatorial optimization problem, especially
considering that the forecasts are probabilistic. At
minimum, a one-week schedule with a 15-minute
granularity must be generated. Typically, contact centers
have hundreds of agents that need to be scheduled; some
have thousands of agents. In addition to service goals,
numerous hard and soft constraints reflecting the contact
center’s operational constraints, local labor rules, and
employee preferences must be satisfied. The agents’
schedules must be specified at a minimum of 15-minute
granularity; in addition to specifying the start time and
duration of a work shift, all of the “off-phone” activities
such as breaks also need to be scheduled. Furthermore, the
recent advent of multi-skilled scheduling and multi-contact
scheduling (see below) has significantly complicated the
problem of optimizing service goals. Traditional methods
(manual scheduling and mathematical programming
approaches) have been unable to keep up with the rapidly

evolving, increasingly difficult scheduling requirements of
the modern contact center.

3. The Director System
We now describe the Director application. After a brief
discussion of the overall system architecture, we will
describe the major components most relevant to the
algorithmic/AI aspects of the system.

System Architecture
From a scheduling-centric point of view, Director consists
of:

• The scheduling engine, which loads an input
scenario and generates a schedule that satisfies hard
constraints and optimizes schedule quality metrics;

• Infrastructure for persisting scheduling scenario
inputs and outputs in a relational database; and

• A GUI.

In addition, there is a major software component required
for integration with ACD’s (automatic call distributors),
which are the hardware/software routers that route
incoming calls/contacts to the appropriate agent in the
contact center.

Workforce management software systems for contact
centers includes much more additional functionality, such
as real-time monitoring of agent adherence to the published
schedule and an extensive reporting facility; however these
other features in Director are beyond the scope of this
paper, which focuses on the scheduling functionality.

The current version of Director (3.1) is implemented as a
set of Microsoft COM components, mostly implemented in
C++. It is a traditional client-server system, which consists
of a back-end database (Microsoft SQL Server or Oracle
relational database) running on a server, and a client, which
consists of business logic components (including the
scheduling engine) and GUI components. A new version of
Director Enterprise will be released in 2002 which is based
on a more modern multi-tiered web-oriented architecture (a
relational database, a J2EE application server running
business logic and other middle-tier services, and a “thin”
web-based GUI client).

In addition, there is another version of Blue Pumpkin
Director, called Director Essential, which is designed for
use by small and medium sized contact centers (typically
with fewer than 100 agents). Its scheduling engine is
implemented in C++, the scheduling scenarios are stored in
a Microsoft Access relational database, and the GUI is
implemented in Visual Basic. The emphasis of Essential is
on ease of use and installation. Director Essential was
actually the predecessor of Director Enterprise, and
development on Essential has continued, focusing on its
target user base of smaller contact centers. Many
algorithmic ideas used in Enterprise originated in Essential.
In the rest of this paper, we will focus on the Enterprise

IAAI-02 823

version, since it provides a superset of the features of
Essential.

Using Director to schedule contact center agents generally
involves the following workflow. First, a model of the
contact center is built in the client, and is stored in the
relational database. The main model elements are the
characteristics of the contact center, the agents (resources),
and the operational constraints. Then, rules/constraints that
apply to the agents (e.g., how many hours per week she can
work, which days she is available, what times he prefers to
work, etc) are entered and linked. Typically, that part of the
scheduling scenario is relatively static from week to week.2

For each week, the user (contact center manager) generates
a forecast of the incoming calls/contacts (the demand
profile). Then, she specifies a target service goal which the
schedule should satisfy, and runs the scheduling algorithm
to generate the schedule. The schedule is posted and
distributed to the contact center agents. Each of the major
steps and components is described below.

Figure 1: A screenshot of the Director GUI for
manipulating schedules. Each row display’s an agent’s
schedule (currently showing part of a day).

Forecasting
In the forecasting step, users create a prediction of the
series of contacts that will arrive in the contact center
during the time period to be scheduled. A basic forecast
can be specified as a sequence of tuples (t, numContacts_t,
AHT_t), where numContacts is the number of contacts that
arrive during the time period t, and AHT is the average
handling time for the contacts (e.g., the amount of time a
contact center agent will spend talking on the phone, or the
time it takes to write a reply to an e-mail inquiry). In
Director, forecasting is done with a 15-minute granularity.
For example, the user might enter a forecast which
specifies that from 8:00AM-8:15AM, 10 calls arrive, with
an AHT of 200 seconds, then from 8:15-8:30, 15 calls
arrive with an AHT of 205 seconds, and so on.

2 The standard period for which Director is used to generate schedules is
one week.

Currently, Director uses a simple forecasting model, where
the user can either manually enter a forecast, or create a
forecast by combining (using weighted averaging) forecasts
from previous scheduling periods. Although it may be
possible to improve the accuracy of the forecasts by
applying more sophisticated learning techniques, users
report satisfaction with the current approach.

Service Goals, Computation of Agent
Requirements, and Modeling Over/Understaffing

Given the forecast for a contact queue, the next step in
scheduling is to specify a service goal for the queue. The
following are some service goals:

• Answer 90% of the incoming calls within 20
seconds.

• Send a reply to 99% of the e-mail inquiries within
24 hours.

• Answer calls within 30 seconds on average.

• Limit abandoned calls to 5% of the incoming calls
(calls are abandoned when a customer hangs up the
phone before an agent becomes available to talk to
the customer).

• No agent should be idle more than 25% of the time.

Combinations of the above are possible, e.g., “Answer 80%
calls within 30 seconds, no more than 5% of the calls can
be abandoned, and no agent should be idle more than 20%
of the time.”

In a scenario where there is a single queue of calls, and any
agent in the contact center can answer the call, it is possible
to compute an agent requirement for a time period. That is,
the number of agents who must be working during that time
period to satisfy the service goal, given the forecast. Agent
requirements are computed by applying the well-known
Erlang-C formula from operations research/queueing
theory (c.f. Kleinrock, 1976) and some straightforward
extensions. Given a candidate schedule, we say a time
interval is understaffed if the number of agents scheduled
to be working during the interval is less than the agent
requirements, and overstaffed if there are fewer agents
scheduled than required. By computing the
over/understaffing for each time interval in the scheduling
period, we have the basis for an objective function for
evaluating a candidate schedule with respect to service
goals.

Now, consider the following case: There are two queues,
the “Widget Sales” inquiry queue, and the “Widget Tech
Support” queue. There are three agents, Bob (who is
qualified to answer sales inquiries), John (qualified to
answer technical support inquiries), and Mary (qualified to
answer either sales or support inquiries). This multi-skilled
scenario differs from the previously described single-queue
case, because it is no longer possible to straightforwardly
compute how over/understaffed the schedule is for a
particular time interval, due to the interaction between the

824 IAAI-02

queues. For example, suppose all agents are initially
available, and three calls arrive in rapid succession. The
first call arrives on the Sales queue, and is answered by
Bob. The second call arrives on the Tech Support queue,
and is immediately followed by a third call, which is a
Sales call. If John answers the call, the third call will be
answered by Mary. However, suppose that Mary answers
the second call. Then, the third call will be put on hold
(even though John is available, he is not able to respond to
Sales calls).

These interactions between the agents, their skills, the order
of calls arriving on the queues, and the way in which the
calls are routed makes it very difficult to answer the
question, “is the schedule understaffed or overstaffed”? In
fact, there is currently no known, closed form formula
(such as the Erlang-C formula) for computing the service
level for the multi-skilled scheduling problem. It is possible
to compute the service level by simulating the schedule and
the call routing algorithm. However, simulations are very
expensive (in the context of generating and optimizing
schedule by a generate-and-test framework such as iterative
repair).

Another important case where the traditional operations
research approaches do not apply is when modeling queues
that are significantly different from phone queues, such as
e-mail contact queues (and similar types of media such as
faxes). E-mail contacts differ from phone calls in several
important ways. First, the service goal usually involves
much longer time periods than phone calls (an e-mail reply
is usually expected within a day or so, while people expect
phone calls to be answered within seconds or minutes).
Second, e-mail inquiries are usually partitioned into many,
sparse, virtual queues. Third, while phone calls are
“abandoned” and leaves a queue when the customer
becomes frustrated after waiting too long on hold, e-mail
contacts are never abandoned. Because of these factors,
the standard Erlang formulas are not applicable when
modeling scheduling agents to staff e-mail queues.

An increasing number of contact centers now handle a
mixture of phone and e-mail contacts simultaneously. For
example a contact center agent might normally answer
phone calls from the set of queues for which he is skilled,
and when no calls are pending, she would reply to e-mail
inquiries. Therefore, a modern contact center agent can no
longer be modeled as a generic staffing unit who can
simply be aggregated into the input of an Erlang-C formula.

A scheduling system for the modern contact center must
simultaneously solve both the multi-skilled scheduling and
the non-phone-media scheduling problems described
above, in addition to the traditional single, phone queue
scheduling problem. This complexity makes it difficult to
apply traditional operations research approaches
(mathematical programming), since all known existing
solutions (proprietary algorithms in commercial systems,
including Director) rely on some form of simulation model.
This makes constraint-based and iterative scheduling

approaches from AI particularly appealing for the contact
center scheduling problem.

Constraints
Employees have various constraints that determine
how/when they can be scheduled. Some constraints are a
result of the policies of the contact center. Some constraints
are mandated either by law or by labor union agreements.
Other constraints reflect the personal preferences of the
staff.

The primitive building block of a schedule is a shift, which
represents a class of object representing a contiguous span
of time for which an agent is scheduled to answer phone
calls.3 A shift may contain a number of off-phone activities
during which she is not available to pick up calls (e.g., 1-
hour meal breaks, 15-minute breaks, etc).

The basic constraints in Director specify parameters such
as the duration and possible start times of shifts, the
duration and possible start times of off-phone activities.
For example, we can specify that an “8-hour standard shift”
is 8 hours long, starts between 9AM and 1PM.
Furthermore, we can specify that this class of shift contains
a “lunch break”, 1-hour off–phone activity, which starts
between 3-4 hours after the start of the shift, as well as a
15-minute “break” that can be scheduled at any time during
the shift. Director builds upon these building blocks with
shift pattern constraints that specify constrain which shifts
can be worked on which day. For example, we can say that
Joe can either work an “8-hour Standard Shift” or “4-hour
Special Shift” on Monday, must work a 4-hour Special
Shift on Tuesday, and must not work any shifts on Sundays.

The user can also specify constraints on the number/amount
of occurrence of various objects, e.g., “Bob must work
between 3 and 4 weekend shifts per month”, “Alice must
work no more than 80 hours per 2 weeks”, “John can not
work more than 5 consecutive days in a row”,

Most constraints involve only a single agent. However,
there are constraints that can involve more than one
employee. For example, we can specify that “John, Mary,
and Robert must all have the same number of weekend
shifts between 1/1/02 and 6/1/02”.

Agents can express their preferences about their own
schedules, and these are treated as soft constraints by
Director. One type of preference is a rank-ordering on the
start times of the shifts, e.g., John prefers to start between
8-9AM on Mondays, but if that’s not possible, start
between 9-10AM, and would really prefer not to start shifts
in the evenings. Agents can also express preferences about
the set of shifts they work, e.g., “I would much rather work

3 For clarity, we restrict this discussion to the simple scenario when
agents only answer phone calls. The definition of shifts and shift
activities is slightly more complex when considering that agents can
partition their time among several media types (e.g., we can specify that
an agent only answers phone calls during a shift, or he can fully “blend”
his phone and e-mail answering activities during a shift).

IAAI-02 825

on the day shifts Monday through Friday than on the night
shifts”.4

Although most planning/scheduling systems with a highly
expressive constraint system use a programming-language-
like textual modeling language to specify constraints, this
would make the system excessively complex for the
intended users of our system, who are not engineers. The
most commonly used rules are specified using various GUI
elements, and the less frequently used constraints are
entered using a pseudo-natural language “sentence builder”
interface, similar to those used by some commercial rule-
based systems such as the Versata Logic Suite and ILOG
Rules. This enables most of the end users of Director to
specify complete scheduling scenarios with little, if any,
assistance from Blue Pumpkin consultants or technical
support staff.5

The constraint system in Director is very expressive, and
can express almost all constraints currently required by the
contact center market (due to lack of space, we have
limited this discussion to a basic subset that illustrates the
capabilities of the system).

The Scheduling Algorithm
Once the scenario is defined, the process of schedule
generation and optimization can begin.

The major design goal of the Director scheduling algorithm
is to allow users to quickly generate satisfactory schedules
with the absolute minimum amount of hassle. Therefore,
the scheduling algorithm needs to be an extremely robust
“black box” with acceptable performance.

The only user-adjustable parameter that influences the
scheduling algorithm’s behavior is a switch which
determines whether the algorithm terminates after
satisfying an internal termination criterion, or continues to
search for better solutions until explicitly interrupted by the
user (“Normal” scheduling mode vs., “Schedule Until
Interrupted” mode).

Internally, the scheduling problem is formulated as a hybrid
constraint satisfaction / global optimization problem. There
is a global objective function, which is a prioritized vector
of scoring terms. For each class of constraint, there is a
corresponding score term that represents the degree to
which that class of constraint is being violated. The score
terms corresponding to “hard” constraints have higher
priority than “soft” constraints and terms corresponding to
service goals.

For each agent, there is a slot variable, which represents the
shift (if any) that the agent is scheduled to work on that
day. Instantiating a shift in a slot results in the instantiation
of variables representing off-phone activities (thus, there is

4 Preferences are entered either using the call center manager’s Director
GUI client, or by the agents themselves using a web-based interface.
5 The underlying, structured scenario model in Director can be
manipulated as an XML document. However, it is hidden from end users.

a one-level abstraction hierarchy consisting of slot and off-
phone activity variables). A schedule is therefore a
complete assignment of variables to values. The scheduling
algorithm tries to generate a schedule with a maximal
score.

The Director scheduling algorithm is a hybrid algorithm,
combining elements from standard iterative repair and
heuristic global optimization algorithms.

The foundation of the Director scheduler is a library of
search algorithms, including depth-first backtracking, beam
search, and iterative sampling. A search algorithm takes a
set of variables and returns a new set of value bindings for
those variables that maximizes the value of the global
objective function. The objective function is incrementally
updated after each variable binding, which enables a
flexible framework where arbitrary search pruning and
backtracking control policies can be implemented in the
search algorithms. We currently make heavy use of a
heuristic algorithm inspired by simulated annealing.

In this framework, the simplest scheduling algorithm would
be: Instantiate a search algorithm which takes as input all of
the slots for all the agents, then run the search algorithm
until some termination criterion is met.

While this strategy (using the annealing algorithm as the
search algorithm) actually works for small, relatively
unconstrained scenarios, brute-force search is insufficient
to solve large problems with difficult constraints.
Therefore, the Director algorithm is an iterative procedure,
which repeatedly selects some set of variables and
optimizes the value bindings by applying some search
algorithm to that limited search space. In classical iterative
repair (Minton et al 1992), the goal of each “repair” is to
resolve a constraint violation, but the Director algorithm is
similar in spirit to recent “repair-based optimization”
scheduling systems such as OPIS (Smith 1994), DCAPS
(Chien et al 1999) and ASPEN (Rabideau, et al 1999), in
that rather than only repairing constraint violations, a
search algorithm could be run on a set of variables either
for optimization (e.g., “one by one, unbind each slot
variable, and try to locally slide the start time of the shift
to improve the service goal score”, or because we have
observed that it is a good policy to run some heuristic
periodically (e.g., “once in a while, unbind all slots for an
agent and reschedule him”).

The time required for the scheduling algorithm to generate
a satisfactory schedule depends largely on the size of the
contact center (number of agents), the number and types of
queues, and the complexity of the constraints. A one-week
schedule for a “typical” 150-agent scenario (at a 15-minute
granularity) can be scheduled in under 5 minutes on a
500Mhz Pentium-III desktop machine; a 1000-agent multi-
skilled scenario takes 30-60 minutes. The complexity of the
algorithm scales roughly linearly with the number of skills
times the number of agents (assuming a fixed set of
constraints). Interestingly, if the number of agents increases
without a corresponding increases in the number of skills,

826 IAAI-02

then the scaling is better than linear. This is because there
are few hard constraints that involve more than a single
agent, which means that the more agents there are, the more
flexibility the algorithm has with respect to meeting the
service goals, which makes the problem “easier” in some
sense.

Besides the scheduling algorithm itself, a great deal of
effort has gone into the development of efficient data
structures and algorithms that enable the incremental
computation of the objective function. The major
computational bottleneck in Director is incremental, on-
demand recomputation of the service goal terms in the
objective function. For example, when the start time of a
shift is changed from 8AM to 9AM, what is the impact on
the service goals? For a single phone queue scenario, this
computation is relatively inexpensive (but still the major
bottleneck); for multi-skilled scenarios with e-mail queues,
this becomes a major bottleneck, which must be alleviated
using various lazy evaluation, caching, and approximation
algorithms.

As we noted already, almost all hard constraints involve
only one agent. This means that in practice, satisfying hard
constraints is relatively easy for the majority of the
scenarios encountered by Director. Most of the search
effort is spent optimizing the soft constraints such as the
service goals and agent preferences. Therefore, the current
scheduling algorithm does not attempt to perform much
constraint propagation, focusing instead on brute-force,
rapid generation and evaluation of candidate schedule
states. This constrasts with constraint-directed refinement
search methods (c.f., Jonsson et al 2000, Smith et al 2000)
which make heavy use of constraint propagation.

In addition to the standard scheduling problem described
above, there are a number of related scheduling problems
that are addressed by Director. We describe some of these
below.

Event Scheduling
In addition to scheduling agent work schedules, Director
also schedules various events attended by one or more of
the agents. Examples of events are: training sessions and
group meetings. Traditional, manual meeting scheduling
systems such as Microsoft Outlook rely on the user finding
a time when all attendees are available. More advanced,
“agent-based” systems (c.f. Maes, 1994) automatically
schedule a meeting and notify attendees, but only consider
the availability and preferences of the attendees. However,
in contact centers, it is dangerous to schedule an event
based only on availability or individual preferences, since it
can have a direct, negative impact on the center’s service
goals.

When scheduling events after the agents’ schedules have
already been finalized, Director takes into consideration the
impact on service goals. In other words, Director will
schedule an event at a time where all attendees are

available, and when the contact queues on which the agents
are working are least understaffed.

In addition, if the agent schedules are not finalized yet,
Director goes one step further and simultaneously
reschedules the agent schedules and the event schedules in
order to minimize the negative impact on service goals.

Workforce Planning
So far, we have assumed a version of the scheduling
problem in which the task is to generate schedules for a
group of existing agents.

A related scheduling problem is: Given a forecast of future
contacts, a set of “employee class profiles” which represent
typical subclasses of agents (and are linked to various
constraints), and some additional constraints (e.g.,
restrictions on the number of percentage of class profile
instances, budget constraints), generate a schedule
consisting of “phantom agents” (instances of the employee
class profiles) which optimizes the global objective
function.

This workforce planning problem is important for users
who need to plan future hiring of contact center agents, i.e.,
how many agents need to be hired, and what skills should
they have?

In some sense, this optimization problem is more difficult
than the standard staff scheduling problem, because of the
combinatorial explosion. Suppose that there are 2
employee class profiles. Profile#1 represents an agent who
can only answer Widget Sales calls, costs $15 per hours,
and works 40 hours per week. Profile#2 represents an agent
who answers both Widget Sales and Technical Support
calls, works 20 hours per week, and earns $25 per hour.
There are many combinations of instances of Profile#1 and
Profile#2, and for each combination, there is a different
optimal schedule.

Director solves this problem with a modified version of its
standard scheduling algorithm, but workforce planning is a
new application where there is clearly a need for further
research.

Multi-week Constraints and Scheduling
Currently, Director schedules one week at a time. This is
because a week is a natural unit, and weekly scheduling is
standard contact center industry practice. Most contact
centers create and publish schedules on a weekly basis,
regardless of whether they use workforce management
software.

However, there are various constraints that have a time
period other than one week, e.g., “Joe must work between
2-3 weekend shifts every 4 weeks.” The Director
scheduling algorithm handles such multi-week constraints
by assuming that the shifts can be distributed evenly among
4 weeks, but it is clear that such heuristics can fail. It
might seem that if we scheduled all four weeks at a time,

IAAI-02 827

then this is not an issue, as long as the algorithm scales up.
However, aside from any algorithmic problems related to
scheduling longer time periods, there is a modeling
problem in that the longer the time period being scheduled,
the higher the probability that assumptions about the
forecast and agent availability (due to unscheduled
absences) become invalid (or the data required to make
reasonable assumptions might be unavailable). Therefore,
scheduling with multi-week constraints is another area
where we will focus further research and development
efforts in the future.

4. Application Deployment and Case
Studies

Blue Pumpkin Director (including both the Enterprise
version and the Essential version) is currently in use at over
800 contact centers combined in a wide range of industries;
over 110,000 contact center agents are being scheduled by
Director. Director Enterprise (the version of Director which
is the focus of this paper) is in use by approximately 400
customers, including 3M, Apple Computer, Federal
Express, GE, AT&T, Kaiser Permanente, Time-Warner
Cable, Verizon, and Yahoo!. Director Enterprise is also
widely used by major outsourced contact centers, which
handle inbound calls for companies such as AOL and
Canon. The typical Director Enterprise user is a large
contact centers with 150-1000 agents. In addition, Essential
(described in the “System Architecture” section) is also in
use by over 400 customers, including AOL/CompuServe
Europe, Peoplesoft, Airborne Express, and EDS. Director
Essential users are typically small to mid-sized contact
centers with fewer than 200 agents.

Like other enterprise-class business application software,
deployment of Director involves a team of implementation
specialists and includes some end user training. It is worth
noting, that in most cases, the deployment complexity is in
the integration of the software with the ACD (see System
Architecture section), and setting up the server. In many
cases, the end users create the scheduling scenarios and run
the scheduling algorithm themselves (including all
constraints) using the Director GUI. In some cases, it only
requires several hours of training for a contact center
manager to become proficient with Director Essential. For
Director Enterprise, the training period is typically several
a few days before the users become proficient with
modeling and scheduling. For complex scenarios, Blue
Pumpkin consultants assist the users with building the first
models, but subsequent models are usually built by the
customers themselves. We believe that this relative
simplicity represents a significant step forward in the
“popularization” of constraints and AI scheduling
technology.

Below, we describe several cases studies of customers
using Director Enterprise.

Borders Group
Borders Group is a leading global retailer of books, music,
movies, and related items. The seasonal nature of the
Borders Group business combined with a multi-skilled
contact center made optimizing its workforce a formidable
challenge. Borders Group plans for its staffing needs well
in advance of the holiday season where customer
expectation is higher than usual. Meeting these
expectations is critical as Borders Group transacts a high
volume of its business during the holiday season. During
this period, there is a surge of over 35% in call volume,
making optimizing available resources and staff essential.

After deploying Director, Borders Group evaluated various
staffing scenarios to design a workforce optimization
strategy that accurately reflected all of Borders’ business
goals. Based upon a selected schedule generated by
Director, Borders Group knew how many seasonal workers
to hire, covering which hours and requiring what skills –
making the hiring process much easier. In addition, by
focusing on the two most required skills instead of cross-
training agents on multiple skills, Borders Group was able
to get seasonal staff on the phones 33% faster, allowing
them to be productive in one week instead of three.

Director enabled Borders Group to increase agent
productivity by 53%, with a 33% reduction in expenses by
allocating agent time more effectively over operating hours.
Customer service levels of 88% were achieved during the
holiday period with most calls answered in under 10
seconds. Borders Group claims that “[Director] enabled us
to clearly drive down our costs and deliver a high level of
customer service not experienced before at Borders Group”
(Charlie Moore, Director of Customer Service, Borders
Group). Borders was also able to reduce turnover of non-
seasonal employees from 15 percent to 10 percent. These
factors contributed to a 25% reduction in overall recruiting
and training expenses.

SGI
SGI recently created a virtual contact center by installing a
new switch that connected its four facilities located
throughout the country. In the past, SGI developed
schedules manually, relying on local critical needs
assessment to develop a plan. Now they needed a more
efficient and accurate method for accommodating the
complexities of a workforce physically located in four time
zones. SGI also decided to bring all customer contact in-
house, increasing call volumes 50% to 2,500 to 3,000 calls
per week. Budget constraints discouraged increasing the
percentage of staff to accommodate the added influx of
new calls. Thus, SGI needed to improve service metrics
without increasing its budget.

When call volumes doubled from bringing all contacts in-
house, headcount had been a concern. However, by using
Director to generate schedules, the new volumes were
handled with only an 8% increase in staffing. The new

828 IAAI-02

optimized plan resulted in a 37% increase in agent
productivity. SGI was also able to improve customer
service levels by 40% and avoid millions of dollars in
additional agent-related expenses. In addition, SGI
increased caller satisfaction ratings by 47%.

Timberline Software
Timberline Software Corporation is an international
supplier of accounting and estimating software for
construction and property management companies.
Timberline’s workforce manager for client services
previously spent a full 40-hour work week creating a one-
week schedule. Despite her long hours, creating the
schedule manually could not accommodate last minute
changes and made it difficult to predict future staffing
needs. Director enabled Timberline to reduce the schedule
creation time by 80%. This time savings allows Timberline
management to focus on other duties such as reporting,
forecasting, and analysis.

Prior to deploying Director, one of Timberline’s greatest
challenges was predicting future staffing needs. Using their
traditional manual scheduling model, they predicted that
they’d need to increase their staff to 138 full-time
specialists in 2000 in order to support their call volume.
However, once they performed the analysis, using Director,
they discovered they only needed as few as 107 full-time
specialists. That reduction in future staffing represents
substantial potential savings for Timberline, totaling more
than $1,000,000.

Compaq Canada Consumer Helpdesk
Compaq’s Canadian Consumer Helpdesk had already been
previously recognized for operational excellence by being
named "Call Center of the Year" by industry media in
recent years. Recently, by deploying Director, they were
able to optimize their workforce processes even further and
saw an immediate increase in customer service
performance and, correspondingly, in financial returns. In
just the first quarter after deployment, Compaq Canada
experienced the following performance and productivity
improvements:

• Call abandonment rate decreased 65.3%
• Average hold time decreased 57.3%
• Net service levels increased 16.3%
• Operational expenses decreased 15%
• Point of sale revenue per agent increased by 17%
• Gross margins increased 18%

Conclusions
Staff scheduling has always been a problem of great
practical importance. The recent growth in the contact
center industry has highlighted the need for effective staff
scheduling systems.. Real-world staff scheduling problems,
with their numerous complexities have proven to be a

fruitful application for artificial intelligence-based
techniques.

This paper described Blue Pumpkin Director, a staff
scheduling system for contact centers. Director represents a
significant application of AI techniques to solve a critical
problem for an important industry.

Director Enterprise and its predecessor, Director Essential,
have been successfully deployed at over 800 contact
centers worldwide, and have provided significant,
quantified benefits to their users. In addition, Director is
used daily (for scenario creation, modification, and
scheduling) by call center managers with less than a week
of training. This demonstrates that powerful, expressive
constraint-based systems can be used successfully by users
without an engineering or operations research background.

Acknowledgements
Director represents the work of a large engineering and product
marketing team at Blue Pumpkin Software. Thanks to Serdar
Uckun, Rich Frainier, and Steve Chien for helpful comments and
suggestions on this paper.

References
Chien S, Rabideau G, Willis J, Mann T, Automating Planning and
Scheduling of Shuttle Payload Operations,” Artificial Intelligence, 114,
pp.239-255, 1999.

Cleveland B, Mayben J. Call Center Management on Fast Forward. Call
Center Press, 1997.

Frost & Sullivan Research Report 6317-62, Agent Performance
Optimization Software Markets, San Jose, CA, 2001.

Datamonitor Corporation Research Report, New York, 1998.

Garey M, Johnson D. Computers and Intractability. New York: W. H.
Freeman. 1979.

Jonsson A, Morris P, Muscettola N, Rajan K, Smith B, Planning in
interplanetary space: Theory and practice," Proc.5th Intl Conf Artificial
Intelligence Planning Systems, CO. April, 2000.

Kleinrock, L. Queueing Systems, Vol 1, New York: Wiley, 1976.

Minton S, Johnston M, Philips A, Laird P. Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling
problems. Artificial Intelligence, 58:161--205, 1992.

Maes P. Agents that Reduce Work and Information Overload.
Communications of the ACM. Vol. 37, No.7,pp. 31-40, 146, ACM Press,
July 1994.

Rabideau G, Chien S, Willis J, Mann T. "Using Iterative Repair to
Automate Planning and Scheduling of Shuttle Payload Operations,"
Innovative Applications of Artificial Intelligence (IAAI), Orlando,
Florida, July 1999.

Rabideau G, Knight R, Chien S, Fukunaga A, Govindjee A. "Iterative
Repair Planning for Spacecraft Operations in the ASPEN System,"
International Symposium on Artificial Intelligence Robotics and
Automation in Space, Noordwijk, The Netherlands, June 1999.

Saddletree Research Report 0101, The U.S. Workforce Management
Software Market, 2000-2004. Scottsdale, AZ, 2001

Smith D, Frank J, Jonsson A. Bridging the gap between planning and
scheduling. Knowledge Engineering Review, 15(1):61--94, 2000.

Smith SF. OPIS: A Methodology and Architecture for Reactive
Scheduling. In M. Fox and M. Zweben, ed., Intelligent Scheduling.
Morgan Kaufmann, 1994.

IAAI-02 829

